LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - APRIL 2010

PH 2103 - PHYSICS FOR CHEMISTRY - I

Date & Time: 22/04/2010 / 1:00 - 4:00 Dept. No.	Max.: 100 Marks
---	-----------------

PART-A

Answer ALL questions.

 $(10 \times 2 = 20 \text{ marks})$

- 1. Sketch the distance-time and velocity-time graphs of uniformly accelerated motion.
- 2. Define the term constraints.
- 3. Given that acceleration due to gravity is 9.8 m/s² and radius of the earth is 6400 km, estimate the value of escape velocity.
- 4. What are parking orbits?
- 5. Find the energy stored in stretching a wire of 2 m length and 1 sq mm cross section through 0.1 mm. Young's modulus of material is $2x10^{11}$ Nm⁻².
- 6. Define surface tension.
- 7. What are the differences between Fresnel and Fraunhoffer diffractions?
- 8. What is optical activity?
- 9. Define unit cell in a crystal lattice.
- 10. State Bragg's law.

PART-B

Answer any FOUR questions.

 $(4 \times 7.5 = 30 \text{ marks})$

- 11. What is a projectile? Derive expressions for range, time of flight and maximum height reached.
- 12. Obtain expressions for mass of the Sun and Earth's density, using the law of gravitation.
- 13. Explain with necessary theory Quincke's method for determining the surface tension of mercury.
- 14. What is circularly polarized light? How is it produced in the laboratory with the help of a quarter wave plate?
- 15. Write a short note on (a) NaCl type crystal and (b) ZnS type crystal.

PART-C

Answer any FOUR questions.

 $(4 \times 12.5 = 50 \text{ marks})$

- 16. Set up the Lagrangian and solve the Lagrange's equation of motion for
 - (a) Atwood's machine
- (b) Simple pendulum.
- 17. Explain in detail the three experimental tests of general theory of relativity.
- 18. a) Derive the Poiseuille's formula for the viscosity of a liquid.

(10)

- b) Calculate the excess pressure inside a soap bubble of radius $3x10^{-3}$ m. Surface tension of soap solution is $20x10^{-3}$ N/m. Calculate also the Surface energy of the soap bubble. (2.5)
- 19. Give the theory of diffraction grating. Describe in detail how you would use a transmission grating for measuring the wavelength of light.
- 20. (a) List the three dimensional Bravais lattices.

(3.5 + 9)

(b) With a neat diagram, describe the Rotating-crystal method of crystal structure determination.
